Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Exp Clin Cancer Res ; 43(1): 125, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664705

RESUMEN

BACKGROUND: Immunotherapy has emerged as a potent clinical approach for cancer treatment, but only subsets of cancer patients can benefit from it. Targeting lactate metabolism (LM) in tumor cells as a method to potentiate anti-tumor immune responses represents a promising therapeutic strategy. METHODS: Public single-cell RNA-Seq (scRNA-seq) cohorts collected from patients who received immunotherapy were systematically gathered and scrutinized to delineate the association between LM and the immunotherapy response. A novel LM-related signature (LM.SIG) was formulated through an extensive examination of 40 pan-cancer scRNA-seq cohorts. Then, multiple machine learning (ML) algorithms were employed to validate the capacity of LM.SIG for immunotherapy response prediction and survival prognostication based on 8 immunotherapy transcriptomic cohorts and 30 The Cancer Genome Atlas (TCGA) pan-cancer datasets. Moreover, potential targets for immunotherapy were identified based on 17 CRISPR datasets and validated via in vivo and in vitro experiments. RESULTS: The assessment of LM was confirmed to possess a substantial relationship with immunotherapy resistance in 2 immunotherapy scRNA-seq cohorts. Based on large-scale pan-cancer data, there exists a notably adverse correlation between LM.SIG and anti-tumor immunity as well as imbalance infiltration of immune cells, whereas a positive association was observed between LM.SIG and pro-tumorigenic signaling. Utilizing this signature, the ML model predicted immunotherapy response and prognosis with an AUC of 0.73/0.80 in validation sets and 0.70/0.87 in testing sets respectively. Notably, LM.SIG exhibited superior predictive performance across various cancers compared to published signatures. Subsequently, CRISPR screening identified LDHA as a pan-cancer biomarker for estimating immunotherapy response and survival probability which was further validated using immunohistochemistry (IHC) and spatial transcriptomics (ST) datasets. Furthermore, experiments demonstrated that LDHA deficiency in pancreatic cancer elevated the CD8+ T cell antitumor immunity and improved macrophage antitumoral polarization, which in turn enhanced the efficacy of immunotherapy. CONCLUSIONS: We unveiled the tight correlation between LM and resistance to immunotherapy and further established the pan-cancer LM.SIG, holds the potential to emerge as a competitive instrument for the selection of patients suitable for immunotherapy.


Asunto(s)
Inmunoterapia , Neoplasias , Humanos , Inmunoterapia/métodos , Pronóstico , Neoplasias/inmunología , Neoplasias/terapia , Neoplasias/mortalidad , Neoplasias/metabolismo , Neoplasias/genética , Ácido Láctico/metabolismo , Ratones , Animales , Femenino
2.
Cell Oncol (Dordr) ; 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38097870

RESUMEN

PURPOSE: Olaparib, an inhibitor of poly-(adenosine diphosphate-ribose) polymerase (PARP), has been shown to have anticancer benefits in patients with pancreatic cancer who have a germline mutation in BRCA1/2. However, resistance acquired on long-term exposure to olaparib significantly impedes clinical efficacy. METHODS: In this study, the chromatin accessibility and differentially expressed transcripts of parental and olaparib-resistant pancreatic cancer cell lines were assessed using the Assay for Transposase Accessible Chromatin with sequencing (ATAC-seq) and mRNA-seq. Detection of downstream genes regulated by transcription factors using ChIP (Chromatin immunoprecipitation assay). RESULTS: According to pathway enrichment analysis, differentially expressed genes in olaparib-resistant cells were remarkably enriched in the NF-κB signaling pathway. With ATAC-seq, we identified chromatin regions with higher accessibility in olaparib-resistant cells and predicted a series of important transcription factors. Among them, activating transcription factor 3 (ATF3) was significantly highly expressed. Functional experiments verified that inhibition of ATF3 suppressed the NF-κB pathway significantly and restored olaparib sensitivity in olaparib-resistant cells. CONCLUSION: Experiments in vitro and in vivo indicate ATF3 enhances olaparib resistance through the NF-κB signaling pathway, suggesting that ATF3 could be employed as an olaparib sensitivity and prognostic indicator in patients with pancreatic cancer.

3.
Front Immunol ; 14: 1096733, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36845096

RESUMEN

Immune cells, including T and B cells, are key factors in the success of liver transplantation. And the repertoire of T cells and B cells plays an essential function in mechanism of the immune response associated with organ transplantation. An exploration of their expression and distribution in donor organs could contribute to a better understanding of the altered immune microenvironment in grafts. In this study, using single-cell 5' RNA sequence and single-cell T cell receptor (TCR)/B cell receptor (BCR) repertoire sequence, we profiled immune cells and TCR/BCR repertoire in three pairs of donor livers pre- and post-transplantation. By annotating different immune cell types, we investigated the functional properties of monocytes/Kupffer cells, T cells and B cells in grafts. Bioinformatic characterization of differentially expressed genes (DEGs) between the transcriptomes of these cell subclusters were performed to explore the role of immune cells in inflammatory response or rejection. In addition, we also observed shifts in TCR/BCR repertoire after transplantation. In conclusion, we profiled the immune cell transcriptomics and TCR/BCR immune repertoire of liver grafts during transplantation, which may offer novel strategies for monitoring recipient immune function and treatment of rejection after liver transplantation.


Asunto(s)
Trasplante de Hígado , Humanos , Receptores de Antígenos de Linfocitos T alfa-beta/genética , Análisis de Expresión Génica de una Sola Célula , Donadores Vivos , Receptores de Antígenos de Linfocitos T/genética , Hígado , Receptores de Antígenos de Linfocitos B/genética
4.
Cell Cycle ; 22(7): 818-828, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36482709

RESUMEN

Dimethyl fumarate (DMF), a therapeutic agent for relapsing-remitting multiple sclerosis, has cytoprotective and antioxidant effects. Ferroptosis, a pathological cell death process, is recently shown to play a vital part in ischemia-reperfusion injury (IRI). This study aimed to unveil the suppressive role of DMF on ferroptosis in liver IRI. The anti-ferroptosis effect of DMF on hepatic IRI was investigated using a liver IRI mouse model and a hypoxia-reoxygenation injury (HRI) model in alpha mouse liver (AML12) cells. Serum transaminase concentrations reflected liver function. Hematoxylin and eosin staining was used to assess liver damage. Cell viability was evaluated utilizing the CCK-8 assay. Malondialdehyde (MDA), the reduced glutathione/oxidized glutathione (GSH/GSSG) ratio, and BODIPY 581/591C11 were measured to estimate the injury caused by lipid peroxidation. Western blotting and real-time polymerase chain reaction (RT-PCR) were performed to explore the underlying molecular mechanisms. We demonstrated the anti-ferroptosis effects of DMF both in vivo and in vitro. DMF treatment ameliorated hepatic IRI. KEGG enrichment analysis and transmission electron microscopy revealed a close relationship between ferroptosis and liver IRI. Furthermore, DMF protected against HRI by inhibiting ferroptosis via activating the nuclear factor E2-related factor 2 (NRF2) pathway. Interestingly, NRF2 knockdown notably decreased the expression of SLC7A11 and HO-1 and blocked the anti-ferroptosis effects of DMF. DMF inhibits ferroptosis by activating the NRF2/SLC7A11/HO-1 axis and exerts a protective effect against hepatic IRI.


Asunto(s)
Dimetilfumarato , Daño por Reperfusión , Ratones , Animales , Dimetilfumarato/farmacología , Dimetilfumarato/uso terapéutico , Dimetilfumarato/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Transducción de Señal , Hígado/metabolismo , Daño por Reperfusión/metabolismo
5.
Bioengineered ; 13(3): 7293-7302, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35260047

RESUMEN

Liver cancer is a common malignant tumor with high incidence and mortality rates. However, a reliable prognostic signature has not yet been confirmed. Circular RNAs (circRNAs) play a role in the development and prognosis of numerous malignancies as well as liver cancer. Therefore, identifying abnormally expressed circRNAs in liver cancer tissue is essential for early diagnosis and treatment. This study found that circular RNA circ SET domain containing 2 (circSETD2) is abnormally expressed in liver cancer tissues, but the role and molecular mechanismsin the occurrence and development of liver cancer are still unclear. The expression level of circSETD2 was evaluated through Quantitative Real-time Polymerase chain reaction (qRT-PCR) in cancerous liver tissues (30 cases), liver cancer cell lines and para-cancerous tissues. Knockdown and overexpression circSETD2 lentiviral vector was constructed and applied to transfect hepatoma cells. Cell Counting Kit-8 (CCK-8), colony formation assay, flow cytometry and Transwell assay were used to examine the effects of circSETD2 overexpression or knockdown on liver cancer migration, invasion, cell cycle and cell proliferation. The tumourigenicity in vivo was utilized to assess the effect of circSETD2 on the proliferation of liver cancer cells. circSETD2 expression is lower in cell lines and liver cancer tissues. circSETD2 knockdown can considerably increase liver cancer cells' invasion, proliferation and colony formation. While In vitro and in vivo, circSETD2 overexpression shows opposite effect. Western blot showed that circSETD2 knockdown can considerably promote E-cadherin expression and inhibit Vimentin, N-cadherin, matrix metallopeptidase-9 (MMP-9) and MMP-2 expression. These findings improve our understanding of the mechanisms of liver cancer progression and will guide future development of therapeutic strategies against the disease by targeting circ-SETD2.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroARNs , Carcinoma Hepatocelular/metabolismo , Línea Celular Tumoral , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Hepáticas/metabolismo , MicroARNs/metabolismo , Dominios PR-SET , ARN Circular/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...